3,918 research outputs found

    Data integration in the rail domain

    Get PDF
    The exchange of information is crucial to the operation of railways; starting with the distribution of timetables, information must constantly be exchanged in any railway network. The slow evolution of the information environment within the rail industry has resulted in the existence of a diverse range of systems, only able to exchange information essential to railway operations. Were the cost of data integration reduced, then further cost reductions and improvements to customer service would follow as barriers to the adoption of other technologies are removed. The need for data integration has already been studied extensively and has been included in the UK industry's rail technical strategy however, despite it's identification as a key technique for improving integration, uptake of ontology remains limited. This thesis considers techniques to reduce barriers to the take up of ontology in the UK rail industry, and presents a case study in which these techniques are applied. Amongst the key barriers to uptake identified are a lack of software engineers with ontology experience, and the diverse information environment within the rail domain. Techniques to overcomes these barriers using software based tools are considered, and example tools produced which aid the overcoming of these barriers. The case study presented is of a degraded mode signalling system, drawing data from a range of diverse sources, integrated using an ontology. Tools created to improve data integration are employed in this commercial project, successfully combing signalling data with (simulated) train positioning data

    Airborne Radar for sUAS Sense and Avoid

    Get PDF
    A primary challenge for the safe integration of small UAS operations into the National Airspace System (NAS) is traffic deconfliction, both from manned and unmanned aircraft. The UAS Traffic Management (UTM) project being conducted at the National Aeronautics and Space Administration (NASA) considers a layered approach to separation provision, ranging from segregation of operations through airspace volumes (geofences) to autonomous sense and avoid (SAA) technologies for higher risk, densely occupied airspace. Cooperative SAA systems, such as Automatic Dependent Surveillance-Broadcast (ADS-B) and/or vehicle-to-vehicle communication systems provide significant additional risk mitigation but they fail to adequately mitigate collision risks for non-cooperative (non-transponder equipped) airborne aircraft. The RAAVIN (Radar on Autonomous Aircraft to Verify ICAROUS Navigation) flight test being conducted by NASA and the Mid-Atlantic Aviation Partnership (MAAP) was designed to investigate the applicability and performance of a prototype, commercially available sUAS radar to detect and track non-cooperative airborne traffic, both manned and unmanned. The radar selected for this research was a Frequency Modulated Continuous Wave (FMCW) radar with 120 degree azimuth and 80 degree elevation field of view operating at 24.55GHz center frequency with a 200 MHz bandwidth. The radar transmits 2 watts of power thru a Metamaterial Electronically Scanning Array antenna in horizontal polarization. When the radar is transmitting, personnel must be at least 1 meter away from the active array to limit nonionizing radiation exposure. The radar physical dimensions are 18.7cm by 12.1cm by 4.1cm and it weighs less than 820 grams making it well suited for installation on small UASs. The onboard, SAA capability, known as ICAROUS, (Independent Configurable Architecture for Reliable Operations of Unmanned Systems), developed by NASA to support sUAS operations, will provide autonomous guidance using the traffic radar tracks from the onboard radar. The RAAVIN set of studies will be conducted in three phases. The first phase included outdoor, ground-based radar evaluations performed at the Virginia Techs Kentland Farm testing range in Blacksburg, VA. The test was designed to measure how well the radar could detect and track a small UAS flying in the radars field of view. The radar was used to monitor 5 test flights consisting of outbound, inbound and crossing routes at different ranges and altitudes. The UAS flown during the ground test was the Inspire 2, a quad copter weighing less than 4250 grams (10 pounds) at maximum payload. The radar was set up to scan and track targets over its full azimuthal field of view from 0 to 40 degrees in elevation. The radar was configured to eliminate tracks generated from any targets located beyond 2000 meters from the radar and moving at velocities under 1.45 meters per second. For subsequent phases of the study the radar will be integrated with a sUAS platform to evaluate its performance in flight for SAA applications ranging from sUAS to manned GA aircraft detections and tracking. Preliminary data analysis from the first outdoor ground tests showed the radar performed well at tracking the vehicle as it flew outbound and repeatedly maintained a track out to 1000 meters (maximum 1387 meters) until the vehicle slowed to a stop to reverse direction to fly inbound. As the Inspire flew inbound tracks from beyond 800 meters, a reacquisition time delay was consistently observed between when the Inspire exceeds a speed of 1.45 meters per second and when the radar indicated an inbound target was present and maintained its track. The time delay varied between 6 seconds to over 37 seconds for the inbound flights examined, and typically resulted in about a 200 meter closure distance before the Inspire track was maintained. The radar performed well at both acquiring and tracking the vehicle as it flew crossing routes out past 400 meters across the azimuthal field of view. The radar and ICAROUS software will be integrated and flown on a BFD-1400-SE8-E UAS during the next phase of the RAAVIN project. The main goal at the conclusion of this effort is to determine if this radar technology can reliably support minimum requirements for SAA applications of sUAS. In particular, the study will measure the range of vehicle detections, lateral and vertical angular errors, false and missed/late detections, and estimated distance at closest point of approach after an avoidance maneuver is executed. This last metric is directly impacted by sensor performance and indicates its suitability for the task

    Identifying Risk Factors of Upper Extremity Injuries in Collegiate Baseball Players: A Pilot Study

    Get PDF
    Background Repetitive pitching places tremendous forces on the shoulder and elbow which can lead to upper extremity (UE) or lower extremity (LE) overuse injuries. Purpose The purpose of this study was to evaluate pre-season physical measurements in collegiate baseball players and track in-season baseball throwing volume to determine which factors may predict throwing overuse injuries. Study Design Retrospective Cohort study. Methods Baseline preseason mobility, strength, endurance, and perception of function were measured in 17 collegiate baseball pitchers. Participants were then followed during the course of the season to collect rate of individual exposure, estimated pitch volume, and rating of perceived exertion in order to determine if changes in workload contributed to risk of injury using an Acute-to-Chronic Workload ratio (ACWR). Results Participants developing an injury had greater shoulder internal rotator strength (p=0.04) and grip strength in a neutral position (p=0.03). A significant relationship was identified between ACWR and UE injuries (p \u3c 0.001). Athletes with an ACWR above or below 33% were 8.3 (CI95 1.8-54.1) times more likely to suffer a throwing overuse injury occurring to the upper or lower extremity in the subsequent week. Conclusion ACWR change in a positive or negative direction by 33% was the primary predictor of subsequent injury. This finding may assist sports medicine clinicians by using this threshold when tracking pitch volume to ensure a safe progression in workload during a baseball season to reduce the risk of sustaining overuse upper or lower extremity injuries. Level of Evidence 3

    Plastron respiration using commercial fabrics

    Get PDF
    A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container

    Identification of sugar-containing natural products that interact with i-motif DNA

    Get PDF
    There are thousands of compounds shown to interact with G-quadruplex DNA, yet very few which target i-motif (iM) DNA. Previous work showed that tobramycin can interact with iM- DNA, indicating the potential for sugar-molecules to target these structures. Computational approaches indicated that the sugar-containing natural products baicalin and geniposidic acid had potential to target iM-DNA. We assessed the DNA interacting properties of these compounds using FRET-based DNA melting and a fluorescence-based displacement assay using iM-DNA structures from the human telomere and the insulin linked polymorphic region (ILPR), as well as complementary G-quadruplex and double stranded DNA. Both baicalin and geniposidic acid show promise as iM-interacting compounds with potential for use in experiments into the structure and function of i-motif forming DNA sequences and present starting points for further synthetic development of these as probes for iM-DNA

    Adult Recipients of Matched Related Donor Blood Cell Transplants Given Myeloablative Regimens Including Pretransplant Antithymocyte Globulin Have Lower Mortality Related to Graft-versus-Host Disease: A Matched Pair Analysis

    Get PDF
    AbstractBecause pretransplantation anti-thymocyte globulin (ATG) seems to reduce graft-versus-host-disease (GVHD) and treatment-related mortality (TRM) after unrelated donor bone marrow transplantation (BMT), we investigated this agent in matched related donor (MRD) blood cell transplantation (BCT). Fifty-four adults receiving rabbit ATG, cyclosporine A, and methotrexate with myeloablative conditioning and undergoing first MRD BCT were matched for disease and stage with 54 patients not given ATG. Most ATG-treated patients had fludarabine with oral (7) or i.v. busulfan (46) with total body irradiation (TBI) in 10. Control patients largely received TBI with VP16 (28) or oral busulfan with cyclophosphamide (15) or fludarabine (7). The ATG was given at a total dose of 4.5 mg/kg over 3 d, finishing on day 0. Rates of acute GVHD (aGVHD) grade II-IV, aGVHD grade III-IV, and chronic GVHD (cGVHD) were 19 ± 5% versus 32 ± 6% (P = .1), 6 ± 3% versus 13 ± 5% (P = NS), and 55 ± 8% versus 96 ± 3% (P = .002) in the ATG and control groups, respectively. Patients given ATG had fewer sites involved by cGVHD compared with the control group (mean 2.1 ± 0.2 versus 2.8 ± 0.2, P = .04). Non-relapse mortality (NRM) with and without ATG, respectively, was 4 ± 3% versus 17 ± 5% at 100 d and 9 ± 4% versus 34 ± 7% at 4 yr (P = .002). Deaths were GVHD related in 3 ATG-treated patients versus 14 controls (P = .007). Despite a trend to more relapse with ATG (43 ± 7% versus 22 ± 7% at 4 yr, P = 0.05), survival was 66 ± 7% in the patients given ATG versus 50 ± 7% in the controls (P = 0.046). This study indicates that myeloablative regimens incorporating fludarabine and oral or i.v. busulfan with pretransplantation ATG given to recipients undergoing MRD BCT may result in less cGVHD, lower TRM, and probably improved quality of life in survivors compared with previous protocols

    Development and Testing of the Orion CEV Parachute Assembly System (CPAS)

    Get PDF
    The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference
    • …
    corecore